Selasa, 08 November 2022

Laporan Akhir 3

  





1. Alat dan Bahan [Kembali]

    A. Alat
1. Modul arduino


Arduino adalah kit elektronik atau papan rangkaian elektronik open source yang di dalamnya terdapat komponen utama yaitu sebuah chip mikrokontroler dengan jenis AVR dari perusahaan Atmel. Arduino yang kita gunakan dalam praktikum ini adalah Arduino Uno yang menggunakan chip AVR ATmega 328P. Dalam memprogram Arduino, kita bisa menggunakan komunikasi serial agar Arduino dapat berhubungan dengan komputer ataupun perangkat lain. 

Bagian-bagian arduino uno:

-Power USB

Digunakan untuk menghubungkan Papan Arduino dengan komputer lewat koneksi USB.

-Power jack

Supply atau sumber listrik untuk Arduino dengan tipe Jack. Input DC 5 - 12 V.

-Crystal Oscillator

Kristal ini digunakan sebagai layaknya detak jantung pada Arduino.  Jumlah cetak                                menunjukkan 16000 atau 16000 kHz, atau 16 MHz.

-Reset

Digunakan untuk mengulang program Arduino dari awal atau Reset.

-Digital Pins I / O

Papan Arduino UNO memiliki 14 Digital Pin. Berfungsi untuk memberikan nilai logika (         0 atau 1 ). Pin berlabel " ~ " adalah pin-pin PWM ( Pulse Width Modulation ) yang dapat digunakan untuk menghasilkan PWM.

-Analog Pins

Papan Arduino UNO memiliki 6 pin analog A0 sampai A5. Digunakan untuk membaca sinyal atau sensor analog seperti sensor jarak, suhu dsb, dan mengubahnya menjadi nilai digital.

-LED Power Indicator

Lampu ini akan menyala dan menandakan Papan Arduino mendapatkan supply listrik dengan baik.

Bagian - bagian pendukung:

-RAM

RAM (Random Access Memory) adalah tempat penyimpanan sementara pada komputer yang isinya dapat diakses dalam waktu yang tetap, tidak memperdulikan letak data tersebut dalam memori atau acak. Secara umum ada 2 jenis RAM yaitu SRAM (Static Random Acces Memory) dan DRAM (Dynamic Random Acces Memory).

-ROM

ROM (Read-only Memory) adalah perangkat keras pada computer yang dapat menyimpan data secara permanen tanpa harus memperhatikan adanya sumber listrik. ROM terdiri dari Mask ROM, PROM, EPROM, EEPROM.



2. Jumper


3. Potensiometer
 Potensiometer (POT) adalah salah satu jenis Resistor yang Nilai Resistansinya dapat diatur sesuai dengan kebutuhan rangkaian elektronika ataupun kebutuhan pemakainya. Sebuah Potensiometer (POT) terdiri dari sebuah elemen resistif yang membentuk jalur (track) dengan terminal di kedua ujungnya. Sedangkan terminal lainnya (biasanya berada di tengah) adalah Penyapu (Wiper) yang dipergunakan untuk menentukan pergerakan pada jalur elemen resistif (Resistive). Pergerakan Penyapu (Wiper) pada Jalur Elemen Resistif inilah yang mengatur naik-turunnya Nilai Resistansi sebuah Potensiometer. 
Simbol dan bentuk Potensiometer dapat dilihat pada gambar 9 berikut.
Gambar  Bentuk dan Simbol Potensiometer 

Jenis Potensiometer: 

# Potensiometer Slider
Potensiometer geser, atau pot geser, dirancang untuk mengubah nilai resistansi kontaknya dengan gerakan linier dan dengan demikian terdapat hubungan linier antara posisi kontak penggeser dan resistansi output.
Mengenal Potensiometer dan Rheostat 
Gambar  Potensiometer Geser

# Potensiometer Rotary 
Potensiometer putar (tipe yang paling umum) memvariasikan nilai resistifnya sebagai hasil dari pergerakan sudut. Memutar kenop atau dial yang terpasang pada poros menyebabkan penyeka internal menyapu sekitar elemen resistif melengkung. Penggunaan potensiometer putar yang paling umum adalah pot kontrol volume.

Mengenal Potensiometer dan Rheostat 
Gambar Potensiometer Rotary

# Potensiometer Trimmer
Potensiometer preset atau trimmer adalah potensiometer tipe "set-and-forget" kecil yang memungkinkan penyesuaian yang sangat halus atau sesekali mudah dilakukan ke rangkaian, (misalnya untuk kalibrasi). Potensiometer preset putar satu putaran adalah versi mini dari variabel resistor standar yang dirancang untuk dipasang langsung pada papan rangkaian tercetak dan disesuaikan dengan menggunakan obeng berbilah kecil atau alat plastik serupa.

Mengenal Potensiometer dan Rheostat 
Gambar  Potensiometer Trimmer atau Preset


4. Motor DC
Motor  DC adalah motor  listrik yan memerluka supla teganga arus searah pada kumparan medan untuk diubah menjadi energi gerak mekanik. Kumparan medan pada motor dc disebut stator (bagian yang tidak berputar) dan kumparan jangkar disebut rotor (bagian yang berputar). Motor arus searah, sebagaimana namanya, menggunakan arus langsung yang tidak langsung/direct- unidirectional. Motor DC adalah piranti elektronik yang mengubah energi listrik menjadi energi mekanik berupa gerak rotasi. Pada motor DC terdapat jangkadengan satu atau lebih kumparan terpisah. Tiap kumparan berujung pada cincin belah (komutator). Dengaadanya insulator antara komutator, cincin belah dapat berperan sebagai saklar kutub ganda (double pole, double throw switch). Motor DC bekerja berdasarkan prinsip gaya Lorentzyang menyatakan ketika sebuah konduktor beraliran  arus diletakkan dalam medan magnet,  maka sebuah gay(yang dikenal dengan gaya Lorentz) akan tercipta secara ortogonal diantara arah medan magnet dan arah aliran arus. Kecepatan putar motor DC (N) dirumuskadengaPersamaan berikut.

 

Gambar 17. Rumus Kecepatan Putar Motor DC

 

 Simbol Motor DC

 



 

Gambar 18. Simbol Motor DC

Motor DC tersusun dari dua bagian yaitu bagian diam (stator) dan bagian bergerak (rotor). Stator motor arus searah adalah badan motor atau kutub magnet (sikat-sikat), sedangkan yang termasuk rotor adalah jangkar lilitanya. Pada motor, kawat penghantar listrik yang bergerak tersebut pada dasarnya merupakan lilitan yang berbentuk persegpanjang yang disebut kumparan.

 
Prinsip Kerja Motor DC

 

Gambar Prinsip Kerja Motor DC

Kumparan ABCD terletak dalam medan magnet serba sama dengan keduduka sis akti A da CB  yang  terleta tepa lurus  arah fluks magnet. Sedangkan sisi AB dan DC ditahan pada bagian tengahnya, sehingga apabila sisi AD dan CB berputar karena adanya gaya lorentz, maka kumparan ABCD akan berputar. 
Hasil perkalian gaya dengan jarak pada suatu titik tertentu disebut momen, sisi aktif AD dan CB akan berputar pada porosnya karena pengaruh momen putar (T). Setiap sisi kumparan aktif AD dan CB pada gambar diatas akan mengalami momen putar sebesar :

 

T = F.r

 Dimana :

T = momen putar (Nm) F = gaya tolak (newton)

r = jarak sisi kumparapada sumbu putar (meter)

Pada daerah dibawah kutub-kutub magnet besarnya momen putar tetap karena besarnya gaya lorentz. Hal ini berarti bahwa kedudukan garis netral sisi sisi kumparan akan berhenti berputar. Supaya motor dapat berputar terus dengan baik, maka perlu ditambah jumlah kumparan yang digunakan. Kumparan- kumparan harus diletakkan sedemikian rupa sehingga momen putar yang dialami setiap sisi kumparan akan saling membantu dan menghasilkan putaran yang baik. Dengan pertimbangan teknis, maka kumparan-kumparan yang berputar tersebut dililitkan pada suatu alat yang disebut jangkar, sehingga lilitan kumparan itupun disebut lilitan jangkar. Struktur Motor DC dapat dilihat pada gambar berikut ini.
Gambar. Struktur Motor DC
 

5. Driver Motor L293D
 IC L293D adalah IC yang didesain khusus sebagai driver motor DC dan dapat dikendalikan dengan rangkaian TTL maupun mikrokontroler. Motor DC yang dikontrol dengan driver IC L293D dapat dihubungkan ke ground maupun ke sumber tegangan positif karena di dalam driver L293D sistem driver yang digunakan adalah totem pool. Dalam 1 unit chip IC L293D terdiri dari 4 buah driver motor DC yang berdiri sendiri sendiri dengan kemampuan mengalirkan arus 1 Ampere tiap drivernya. Sehingga dapat digunakan untuk membuat driver H-bridge untuk 2 buah motor DC. Konstruksi pin driver motor DC IC l293D adalah sebagai berikut.

Konstruksi Pin Driver Motor DC IC L293D



Fungsi Pin Driver Motor DC IC L293D

·   1. Pin EN (Enable, EN1.2, EN3.4) berfungsi untuk mengijinkan driver menerima perintah untuk menggerakan motor DC.

2. Pin In (Input, 1A, 2A, 3A, 4A) adalah pin input sinyal kendali motor DC 
3. Pin Out (Output, 1Y, 2Y, 3Y, 4Y) adalah jalur output masing-masing driver yang dihubungkan ke motor DC 
4. Pin VCC (VCC1, VCC2) adalah jalur input tegangan sumber driver motor DC, dimana VCC1 adalah jalur input sumber tegangan rangkaian kontrol dirver dan VCC2 adalah jalur input sumber tegangan untuk motor DC yang dikendalikan. 
5. Pin GND (Ground) adalah jalu yang harus dihubungkan ke ground, pin GND ini ada 4 buah yang berdekatan dan dapat dihubungkan ke sebuah pendingin kecil.

Feature Driver Motor DC IC L293D Driver motor DC IC L293D memiliki feature yang lengkap untuk sebuah driver motor DC sehingga dapat diaplikasikan dalam beberapa teknik driver motor DC dan dapat digunakan untuk mengendalikan beberapa jenis motor DC. Feature yang dimiliki driver motor DC IC L293D sesuai dengan datasheet adalah sebagai berikut :

·         - Wide Supply-Voltage Range: 4.5 V to 36 V

·         - Separate Input-Logic Supply

·         - Internal ESD Protection

·         - Thermal Shutdown

·         -  High-Noise-Immunity Inputs

          - Functionally Similar to SGS L293 and SGS L293D

·         Output Current 1 A Per Channel (600 mA for L293D)

·         - Peak Output Current 2 A Per Channel (1.2 A for L293D)

·         - Output Clamp Diodes for Inductive Transient Suppression (L293D)

Rangkaian Aplikasi Driver Motor DC IC L293D


Pada gambar driver IC L293D diatas adalah contoh aplikasi dari keempat unit driver motor DC yang dihubungkan secar berbeda sesuai dengan keinginan dan kebutuhan.






2. Rangkaian Percobaan [Kembali]



3. Prinsip Kerja [Kembali]

Rangkain menggunakan arduino, driver, motor, LCD, dan LM35. Pin A0 dihubungkan denagn pin 2 pada sensor suhu. Pin arduino 9 dihubungkan dengan pin In2 pada driver, pin 10 dengan pin In1. Pin OUT1 dan OUT2 pada driver dihubungkan dengan motor. Pin EN1 dan Vss pada driver dihubungkan pada power. hal ini agar In1 dan In2 aktif dan bisa mengakses. Pin Vs dihubungkan denagn baterai 12v karena motor memiliki tegangan 5-12v dan arduino hanya memfasilitasi 5v sehingga butuh tambahan dari luar. Pin GND dihubungkan pada ground agar tegangan yang besar dan berlebih disalurkan kesana dan komponen tidak rusak.

Pin digital pada arduino dihubungkan dengan LCD. Pin 3 dihubungkan dengan pin RS, yang merupakan pin untuk memilih data dikirim dan diterima. pin 2 dehubungkan dengan pin E, yang merupakan pin untuk persetujuan anable untuk tampilan dilayar. pin 7 dihubungkan dengan D4, pin 6 dihubungkan dengan D5, pin 5 dihubungkan dengan pin D6 dan 4 dihubungkan dengan D7. Karena dihubungkan dengan pin D4-D7 maka bit bisa 4 atau 8.

Cara kerja dari rangkaian ini adalah dengan menampilkan angka 9,7, dan 5. Cara kerja dari program yang digunakan adalah:
1. digunakan '#include' untuk deklarasi library LCD dan keypad karena proteus tidak memiliki library nya
2. menggunakan 'void setup' yang kan menyatakan bahwa fungsi hanya akan dieksekusi sekali saja
3. menggunakan 'void loop' yang menyatakan bahwa fungsi bisa dikode berulang.
4. menggunakan 'digitalwrite' yang akan menyatakan fungsi yang akan dilaksanakan
5. menggunkan 'delay' yang digunkan untuk menunda dan menahan tampilan pada 7segmen 
6. digunkan 'lcd.begin(20,4)' untuk mengatur baris dan kotom LCD. disini berarti terdapat 20 baris dengan 4 kolom.
7. digunkan 'lcd.setCursor' untuk menentukan awal karakter muncul pada baris dan kolom
8 .digunakan 'lcd.print' untuk menampilkan output yang diinginkan

5. Video Percobaan [Kembali]






5. Analisis [Kembali]

1. Pada percobaan, kita menggunakan servo. Apa saja pin yang ada pada servo tersebut? Kemanakan pin tersebut dihubungkan pada arduino? Bagaimana pengaruh potensiometer terhadap pergerakan dari servo tersebut?

Jawab:

Berdasarkan praktikum yang telah dilakukan, pin yang terdapat pada servo ada 3 yaitu pin GND, pin VCC atau pin +5V, dan pin data atau pin PWM. Pin GND dihubungkan pada ground atau pada breadboard dihubungkan pada kutub negatif, pin VCC dihubungkan pada power atau pada breadboard dihubungkan pada kutup positif, dan pin data dihubungkan pada pin 9 arduino. Pengaruh potensiometer terhadap pergerakkan servo adalah saat diputar ke kiri maka servo akan bergerak maju atau searah jarum jam dan saat diputar kekanan maka servo akan bergerak mundur atau berlawanana arah jarum jam.

2. Diketahui suatu rangkaian dengan besar Vin yaitu 5V, Duty Cycle : 65%, dan frekuensinya sebesar 50Hz. Tentukanlah berapa Vout, ton, toff, Von, dan Voff nya?


Jawab :

 Diketahui :

Vin = 5V

Duty Cycle = 65%

Frekuensi = 50 Hz

Jawab :



7. Download [Kembali]
Download video Download File
Datasheet Motor DC Download File
Datasheet Arduino UNO Download File
Datasheet Driver Motor L293D Download File
Download Datasheet Potensiometer Download File
Download Datasheet LM 35 Download File
Download Datasheet LCD Download File

Tidak ada komentar:

Posting Komentar

Modul 4

[KEMBALI KE MENU SEBELUMNYA] DAFTAR ISI 1. Tujuan Perancangan 2. Komponen 3. Dasar Teori 4. Listing Program 5. Flowchart ...